199 research outputs found

    Long Distance Transport of Ultracold Atoms using a 1D optical lattice

    Full text link
    We study the horizontal transport of ultracold atoms over macroscopic distances of up to 20 cm with a moving 1D optical lattice. By using an optical Bessel beam to form the optical lattice, we can achieve nearly homogeneous trapping conditions over the full transport length, which is crucial in order to hold the atoms against gravity for such a wide range. Fast transport velocities of up to 6 m/s (corresponding to about 1100 photon recoils) and accelerations of up to 2600 m/s2 are reached. Even at high velocities the momentum of the atoms is precisely defined with an uncertainty of less than one photon recoil. This allows for construction of an atom catapult with high kinetic energy resolution, which might have applications in novel collision experiments.Comment: 15 pages, 8 figure

    Coherent transport of atomic wave packets in amplitude-modulated vertical optical lattices

    Full text link
    We report on the realization of dynamical control of transport for ultra-cold Sr88 atoms loaded in an accelerated and amplitude-modulated 1D optical lattice. We tailor the energy dispersion of traveling wave packets and reversibly switch between Wannier-Stark localization and driven transport based on coherent tunneling. Within a Loschmidt-echo scheme where the atomic group velocities are reversed at once, we demonstrate a novel mirror for matter waves working independently of the momentum state and discuss possible applications to force measurements at micrometric scales

    Reflection of Channel-Guided Solitons at Junctions in Two-Dimensional Nonlinear Schroedinger Equation

    Full text link
    Solitons confined in channels are studied in the two-dimensional nonlinear Schr\"odinger equation. We study the dynamics of two channel-guided solitons near the junction where two channels are merged. The two solitons merge into one soliton, when there is no phase shift. If a phase difference is given to the two solitons, the Josephson oscillation is induced. The Josephson oscillation is amplified near the junction. The two solitons are reflected when the initial velocity is below a critical value.Comment: 3 pages, 2 figure

    Hyperfine, rotational and Zeeman structure of the lowest vibrational levels of the 87^{87}Rb2_2 \tripletex state

    Full text link
    We present the results of an experimental and theoretical study of the electronically excited \tripletex state of 87^{87}Rb2_2 molecules. The vibrational energies are measured for deeply bound states from the bottom up to v′=15v'=15 using laser spectroscopy of ultracold Rb2_2 Feshbach molecules. The spectrum of each vibrational state is dominated by a 47\,GHz splitting into a \cog and \clg component caused mainly by a strong second order spin-orbit interaction. Our spectroscopy fully resolves the rotational, hyperfine, and Zeeman structure of the spectrum. We are able to describe to first order this structure using a simplified effective Hamiltonian.Comment: 10 pages, 7 figures, 2 table

    Repulsively bound atom pairs: Overview, Simulations and Links

    Full text link
    We review the basic physics of repulsively bound atom pairs in an optical lattice, which were recently observed in the laboratory, including the theory and the experimental implementation. We also briefly discuss related many-body numerical simulations, in which time-dependent Density Matrix Renormalisation Group (DMRG) methods are used to model the many-body physics of a collection of interacting pairs, and give a comparison of the single-particle quasimomentum distribution measured in the experiment and results from these simulations. We then give a short discussion of how these repulsively bound pairs relate to bound states in some other physical systems.Comment: 7 pages, 3 figures, Proceedings of ICAP-2006 (Innsbruck

    Guiding Neutral Atoms with a Wire

    Get PDF
    We demonstrate guiding of cold neutral atoms along a current carrying wire. Atoms either move in Kepler-like orbits around the wire or are guided in a potential tube on the side of the wire which is created by applying an additional homogeneous bias field. These atom guides are very versatile and promising for applications in atom optics.Comment: 4 pages, 6 figures, submitted to PR

    Atom Chips

    Get PDF
    Atoms can be trapped and guided using nano-fabricated wires on surfaces, achieving the scales required by quantum information proposals. These Atom Chips form the basis for robust and widespread applications of cold atoms ranging from atom optics to fundamental questions in mesoscopic physics, and possibly quantum information systems

    Collective oscillations of a Fermi gas in the unitarity limit: Temperature effects and the role of pair correlations

    Full text link
    We present detailed measurements of the frequency and damping of three different collective modes in an ultracold trapped Fermi gas of 6^6Li atoms with resonantly tuned interactions. The measurements are carried out over a wide range of temperatures. We focus on the unitarity limit, where the scattering length is much greater than all other relevant length scales. The results are compared to theoretical calculations that take into account Pauli blocking and pair correlations in the normal state above the critical temperature for superfluidity. We show that these two effects nearly compensate each other and the behavior of the gas is close to the one of a classical gas.Comment: 8 pages, 5 figure

    Pure Gas of Optically Trapped Molecules Created from Fermionic Atoms

    Full text link
    We report on the production of a pure sample of up to 3x10^5 optically trapped molecules from a Fermi gas of 6Li atoms. The dimers are formed by three-body recombination near a Feshbach resonance. For purification a Stern-Gerlach selection technique is used that efficiently removes all trapped atoms from the atom-molecule mixture. The behavior of the purified molecular sample shows a striking dependence on the applied magnetic field. For very weakly bound molecules near the Feshbach resonance, the gas exhibits a remarkable stability with respect to collisional decay.Comment: 4 pages, 5 figure

    Atom-molecule dark states in a Bose-Einstein condensate

    Full text link
    We have created a dark quantum superposition state of a Rb Bose-Einstein condensate (BEC) and a degenerate gas of Rb2_2 ground state molecules in a specific ro-vibrational state using two-color photoassociation. As a signature for the decoupling of this coherent atom-molecule gas from the light field we observe a striking suppression of photoassociation loss. In our experiment the maximal molecule population in the dark state is limited to about 100 Rb2_2 molecules due to laser induced decay. The experimental findings can be well described by a simple three mode model.Comment: 4 pages, 6 figure
    • …
    corecore